Dependency Parser-based Negation Detection in Clinical Narratives

نویسندگان

  • Sunghwan Sohn
  • Stephen Wu
  • Christopher G. Chute
چکیده

Negation of clinical named entities is common in clinical documents and is a crucial factor to accurately compile patients' clinical conditions and to further support complex phenotype detection. In 2009, Mayo Clinic released the clinical Text Analysis and Knowledge Extraction System (cTAKES), which includes a negation annotator that identifies negation status of a named entity by searching for negation words within a fixed word distance. However, this negation strategy is not sophisticated enough to correctly identify complicated patterns of negation. This paper aims to investigate whether the dependency structure from the cTAKES dependency parser can improve the negation detection performance. Manually compiled negation rules, derived from dependency paths were tested. Dependency negation rules do not limit the negation scope to word distance; instead, they are based on syntactic context. We found that using a dependency-based negation proved a superior alternative to the current cTAKES negation annotator.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feature Engineering in Persian Dependency Parser

Dependency parser is one of the most important fundamental tools in the natural language processing, which extracts structure of sentences and determines the relations between words based on the dependency grammar. The dependency parser is proper for free order languages, such as Persian. In this paper, data-driven dependency parser has been developed with the help of phrase-structure parser fo...

متن کامل

What’s great and what’s not: learning to classify the scope of negation for improved sentiment analysis

Automatic detection of linguistic negation in free text is a critical need for many text processing applications, including sentiment analysis. This paper presents a negation detection system based on a conditional random field modeled using features from an English dependency parser. The scope of negation detection is limited to explicit rather than implied negations within single sentences. A...

متن کامل

Extraction of Drug-Drug Interaction from Literature through Detecting Linguistic-based Negation and Clause Dependency

Extracting biomedical relations such as drug-drug interaction (DDI) from text is an important task in biomedical NLP. Due to the large number of complex sentences in biomedical literature, researchers have employed some sentence simplification techniques to improve the performance of the relation extraction methods. However, due to difficulty of the task, there is no noteworthy improvement in t...

متن کامل

Bilexical Dependencies as an Intermedium for Data-Driven and HPSG-Based Parsing

Bilexical dependencies capturing asymmetrical lexical relations between heads and dependents are viewed as a practical representation of syntax that is well-suited for computation and intelligible for human readers. In the present work we use dependency representations as a bridge between data-driven and grammar-based parsing, both for cross-framework parser comparison and for parser integratio...

متن کامل

Negation Scope Delimitation in Clinical Text Using Three Approaches: NegEx; PyConTextNLP and SynNeg

Negation detection is a key component in clinical information extraction systems, as health record text contains reasonings in which the physician excludes different diagnoses by negating them. Many systems for negation detection rely on negation cues (e.g. not), but only few studies have investigated if the syntactic structure of the sentences can be used for determining the scope of these cue...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2012  شماره 

صفحات  -

تاریخ انتشار 2012